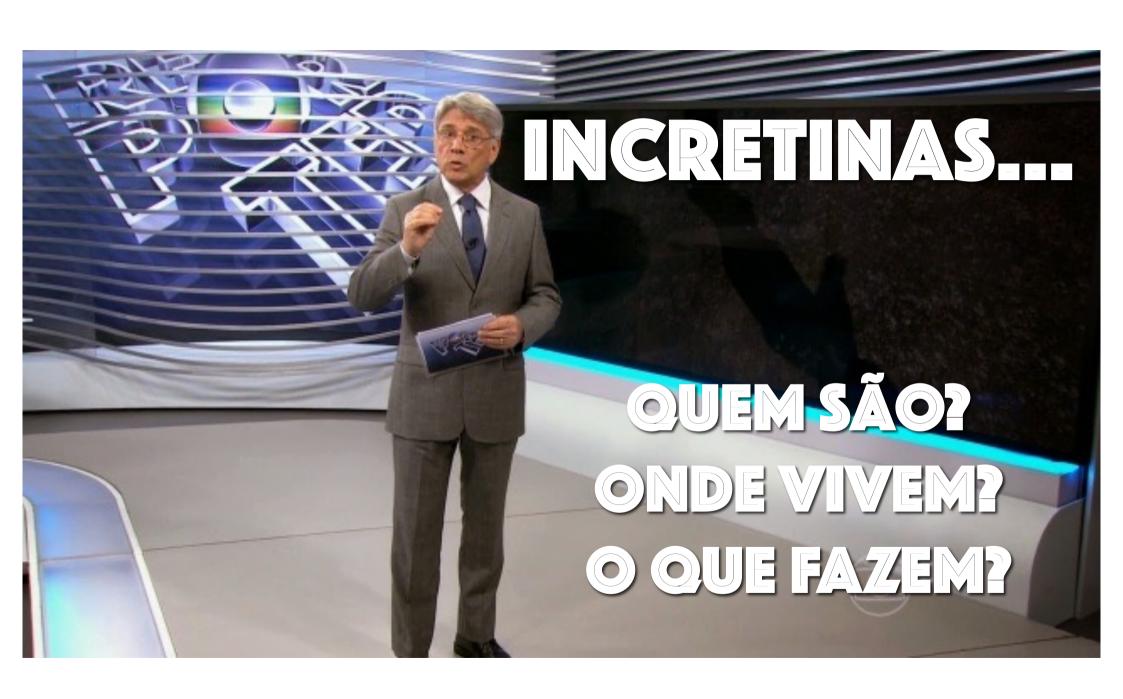
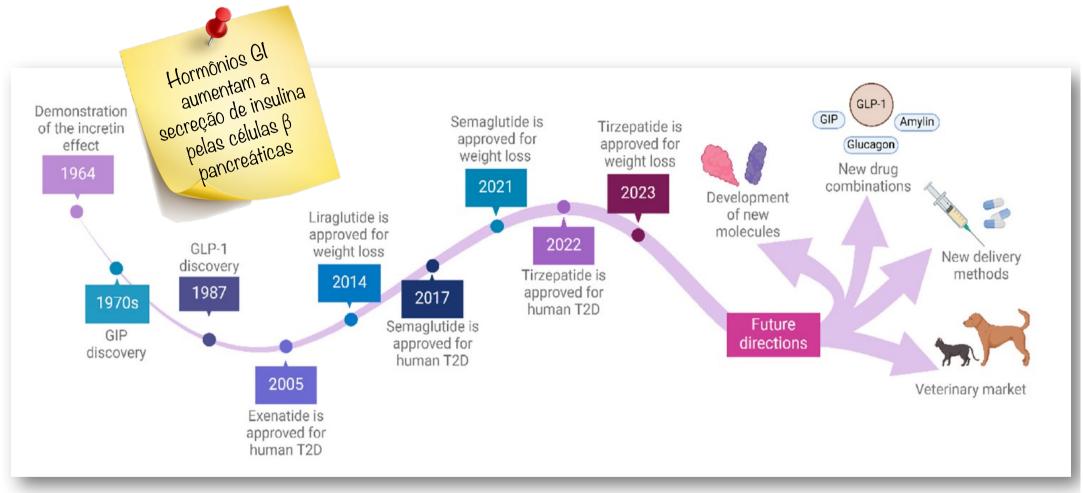


MEDICAÇÕES PARA TRATAMENTO DA OBESIDADE – já são realidade na medicina veterinária?

MV. Profa. Ma. Dra. Sofia Borin Crivellenti


Endocrinologia HV-UFU


Médica Veterinária graduada pela Universidade Federal de Uberlândia - UFU
Mestre e Doutora em Medicina Veterinária (Clínica Médica), UNESP Jaboticabal
Residência em Clínica Médica de Pequenos Animais – UNESP Jaboticabal
Estágio e Pesquisa Internacional junto à The Ohio State University – USA
Pós-doutora em Medicina Veterinária (Clínica Médica), UNESP Jaboticabal
Professora de Clínica Médica de Pequenos Animais e da PPGCV da UFU
Pesquisa e Atuação em Endocrinologia Veterinária
Membro da Diretoria da ABEV

"Nutrologia na prática da endocrinologia"

Zomer & Cooke. Advances in Drug Treatments for Companion Animal Obesity
Biology 2024, 13, 335. https://doi.org/10.3390/biology13050335

Reversão do Diabetes Mellitus

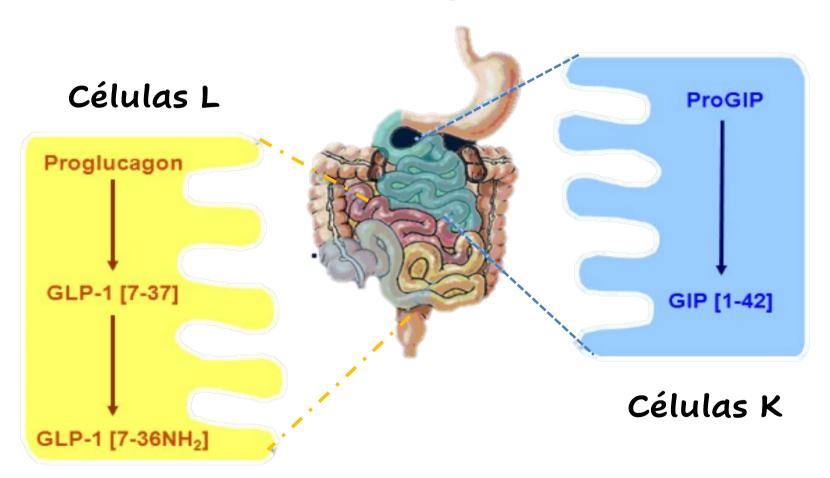
Cirurgia	Reversão DM-2
Bypass gastrojejunal	84% (global) → 80,3% (> 2 anos)
Derivação Biliopancreática	98% (global) → 95,1% (> 2 anos)

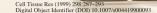
Reversão do DM-2 Grave após Bypass

Usuários de insulina	62%
> 10 anos DM	54%

Reversão do DM-2 após Bypass (Brasil)

Santo et al.	94,3% (5 anos) / 84,7% (8 anos)
Pajecki et al.	76,5% (> 5 anos)


Schauer (2003) Buchwald (2004) Pajecki (2007) Buchwald (2009) Santo (2010)



Como isso é possível se a perda de peso não imediata?

GIP E GLP-1 são sintetizados e secretados a partir do intestino em resposta a ingestão dos alimentos

Springer-Verlag 1999

REGULAR ARTICLE

Anders B. Damholt · Hans Kofod Alison M.J. Buchan

Immunocytochemical evidence for a paracrine interaction between GIP and GLP-1-producing cells in canine small intestine

Received: 30 March 1999 / Accepted: 15 July 1999 / Published online: 21 September 1999

tin. We have recently demonstrated that glucose-dependent insulinotropic peptide (GIP) stimulated GLP-1 sefurther the interplay between GLP-1- and GIP-secreting cells, we set out to determine the exact location and tine. Canine small intestine was subdivided into 15-20 segments and investigated by immunocytochemistry with computer-assisted imaging. The abundance of GIP-, GLP-1- and somatostatin-immunoreactive cells was determined. GIP-secreting K cells were equally distributed in duodenum and jejunum, with the GLP-1-secreting L the K cells also contained 51% of the L cells. Double immust interact with GLP-1-containing cells in the intestine. munostaining confirmed this overlap and furthermore over 30% of the L cells in this region were found adjacent to K cells. These results suggest the existence of a cate the importance of the jejunum in the regulation of insulin release by enteric-derived incretins.

Kev words Somatostatin · Enteroinsular axis Immunocytochemistry · Dog

Introduction

Glucagon-like peptide 1 (GLP-1) secreted from intestinal endocrine cells has been established as a glucose-depen-

A.B. Damholt · H. Kofod Diabetes Discovery, Novo Nordisk A/S, Novo allé 6A1.57, Bagsvaerd DK-2880, Denmark

Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3

e-mail:buchan@cs.ubc.ca Tel: +1 604 822 2083, Fax: +1 604 822 6048

Abstract Glucagon-like-peptide 1 (GLP-1) released dent incretin in a number of species including canines from the intestine is considered to be an important incre- and humans (Orskov et. al. 1996; Holst 1997). Recent data from our laboratory, based on a primary culture of canine epithelium enriched for GLP-1 cells, indicated that cretion from canine ileal L cells in culture. To investigate glucose itself was incapable of stimulating GLP-1 release. However, glucose-dependent insulinotropic peptide (GIP), another incretin, stimulated GLP-1 release abundance of both cell types throughout the canine intes- (Damholt et al. 1998). The lack of a direct effect of glucose on GLP-1 secretion has previously been observed in both perfused intestine and isolated cell preparations from rats (Brubaker and Vranic 1987; Roberge and Brubaker 1991) Furthermore GIP has been demonstrated to stimulate GLP-1 release from rat intestine (Brubaker 1991; Roberge and Brubaker 1993). These data suggest cells concentrated in the jejunum (5% duodenum, 73% that GIP released from the upper intestine in response to jejunum and 22% ileum). These results indicated that the increased luminal glucose levels (Pederson et al. 1975) in middle section of the small intestine containing 69% of turn stimulates GLP-1 release. If this is the case then GIP

GLP-1 is a cleavage product of proglucagon and is produced in the intestinal L cells (Holst 1997). Quantitative immunocytochemical studies have demonstrated paracrine interaction between the K and L cells and indi- that the majority of L cells are located in the ileum and colon, with a small number of cells in the distal jejunum (Eissele et al. 1992: Kauth and Metz 1987). In contrast to GLP-1 GIP-immunoreactive (K) cells are concentrated in duodenum and proximal jejunum (Buchan et al. 1982; Varndell et al. 1985).

There are two mechanisms by which GIP can interact with GLP-1 cells: either by the classical endocrine route with GIP released into the circulation from the duodenum and upper jejunum to affect the GLP-1 cells in the ileum or by a paracrine (local) action. In the case of the interaction between GIP and GLP-1 cells the former has been considered to be the more likely due to the nonoverlapping distribution of the two cell types. In addition to an interaction between GIP and GLP-1 cells, the release of both peptides is regulated by somatostatin (SS). In this case the interaction is considered to be of the paracrine type as SS-containing D cells are distributed throughout the small intestine (Larsson et al. 1979; Baldissera et al. 1985).

Contents lists available at SciVerse ScienceDirect

Domestic Animal Endocrinology

iournal homepage: www.domesticanimalendo.com

Short Communication

Distribution of K and L cells in the feline intestinal tract

C. Gilor a,*,† S. Gilor b, T.K. Graves a, L.B. Borst b,‡ P. Labelle b,§ T.K. Ridge a, D. Santoro a, O. Dossin a, ¶

² Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
⁵ Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA

ARTICLE INFO

Article history Received 21 February 2013 Received 21 February 2013 Received in revised form 23 April 2013 Accepted 26 April 2013

Keywords: Incretin Ohositu GLP-1 GLP-2

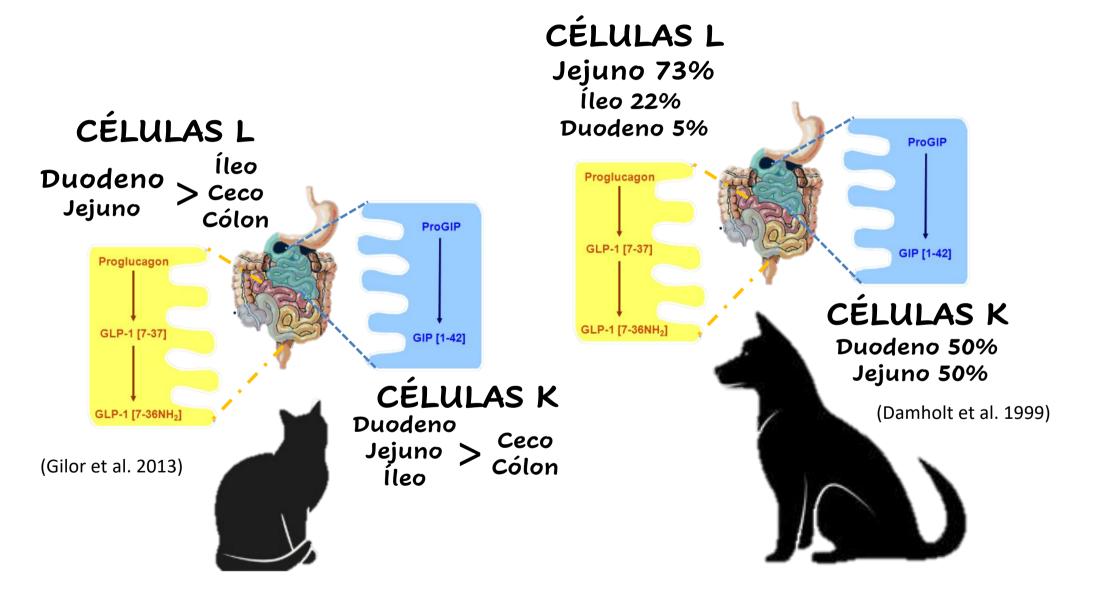
ARSTRACT

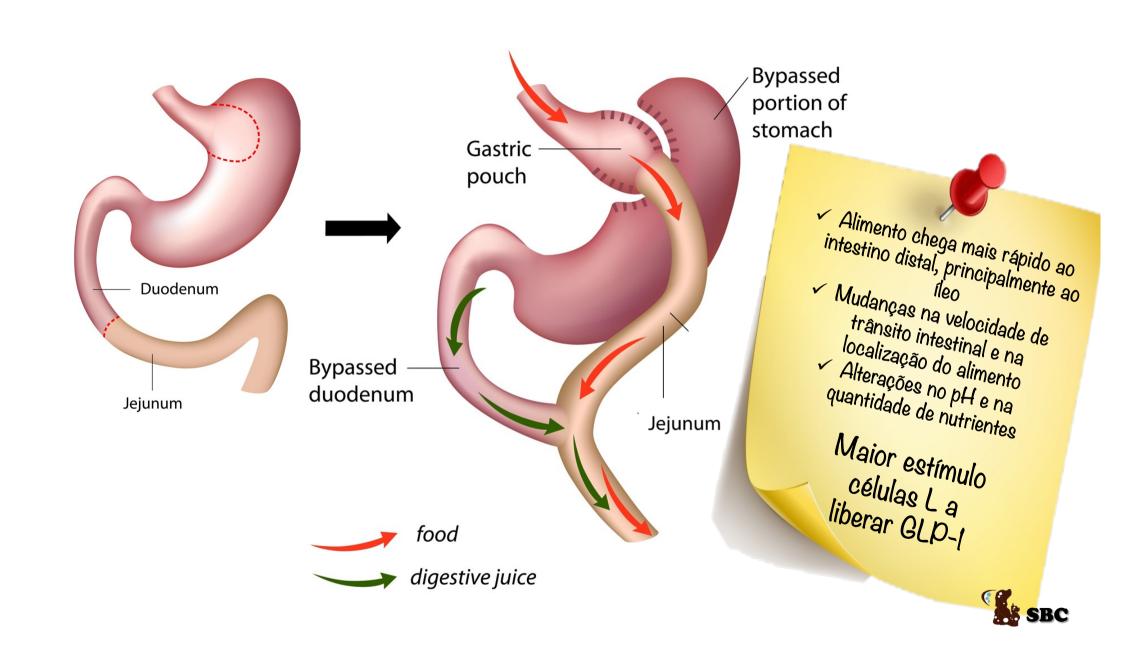
Glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide (GIP)-1 and GLP-2 are hormones secreted from specialized K cells (GIP) and L cells (GLP-1, GLP-2) in the intestinal mucosa. These hormones play major roles in health and disease by modulating insulin secretion, satiety, and multiple intestinal functions. The aim of this study was to describe the distribution of K cells and L cells in the intestines of healthy cats. Samples of duodenum, mid-ieiunum, ileum, cecum, and colon were collected from 5 cats that were euthanized for reasons unrelated to this study and had no gross or histologic evidence of gastrointestinal disease. Samples stained with rabbit-anti-porcine GIP, mouse-anti-(all mammals) GLP-1, or rabbit-anti-(all mammals) GLP-2 antibodies were used to determine the number of cells in 15 randomly selected 400× microscopic fields. In contrast to other mammals (eg. dogs) in which K cells are not present in the ileum and aborally GIPexpressing cells are abundant throughout the intestines in cats (>6/high-power field in the ileum). Cells expressing GLP-1 or GLP-2 were most abundant in the ileum (>9/high-power field) as in other mammals, but, although GLP-1-expressing cells were abundant throughout the intestines, GLP-2-expressing cells were rarely found in the duodenum. In conclusion, the distribution of GIP-secreting K cells in cats is different from the distribution of K cells that is described in other mammals. The difference in distribution of GLP-2- and GLP-1-expressing cells suggests that more than 1 distinct population of L cells is present

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The physiology of the entergendocrine K cells and L cells has been studied in rodents dogs nigs and humans but not in cats. These enteroendocrine cells are dispersed along the

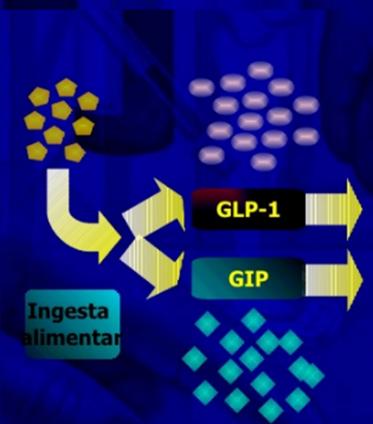

- * Corresponding author. Tel.: +1 614 688 7532; fax: +1 614 292 1454. E-mail address: shirchen69@yahoo.com (C. Gilor).
- Present address: Department of Veterinary Clinical Sciences The Ohio
- State University, Columbus, Ohio, USA.


 † Present address: Department of Population Health and Pathobiology,
- North Carolina State University, Raleigh, North Carolina, USA.

 † Present address: Antech Diagnostics, 1111 Marcus Ave, Lake Success,
- New York, 11042, USA.
- Present address: Department of Clinical Sciences and Clinical Research Unit, University of Toulouse INP Ecole Vétérinaire, Toulouse,

0739-7240/\$ - see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/i.domaniend.2013.04.004

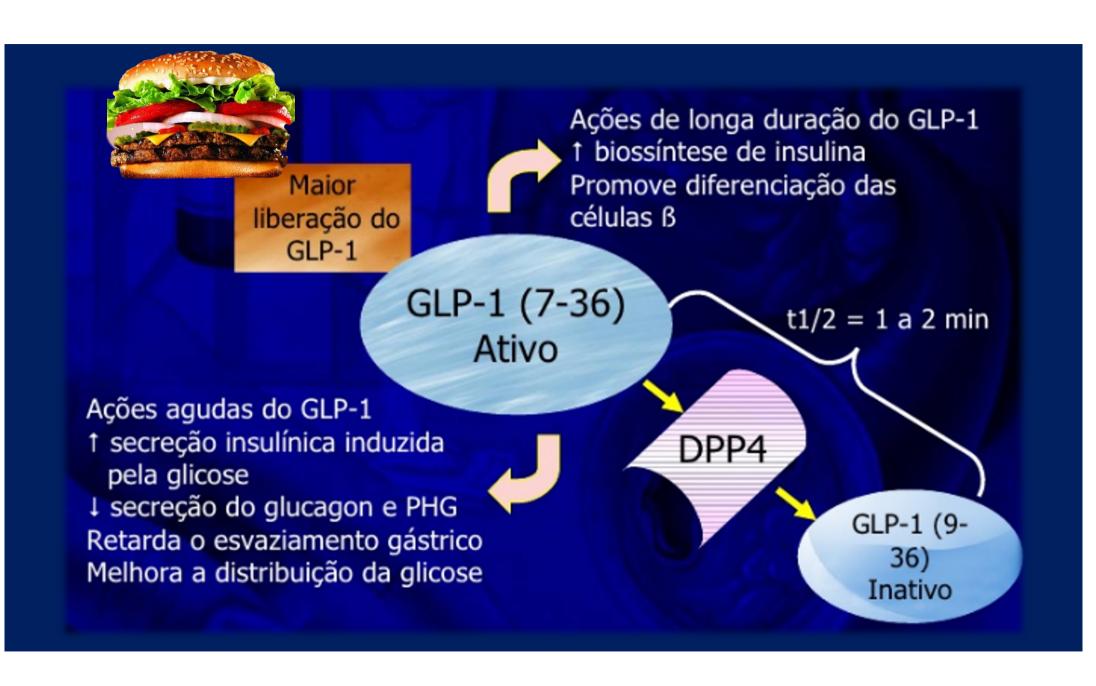
epithelium of the intestinal tract where they sense the type and quantity of digested nutrients. They play a crucial role in glucose metabolism by secreting the incretin hormones glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide (GLP)-1 that increase the sensitivity of the pancreas to the stimulatory effect of glucose on insulin secretion [1,2]. Incretin hormones also participate in regulation of pancreatic beta-cell differentiation, proliferation, and survival; affect glucagon secretion; slow the rate of gastric emptying and increase satiety [3]. The hormone glucagon-like peptide-2 (GLP-2) is also secreted from L cells and leads to increased small bowel weight by stimulating enterocyte proliferation and decreasing their apoptosis [4]. It also stimulates glucose absorption in enterocytes, increases blood flow to the intestines, and enhances barrier function in intestinal epithelium, making it a potential



GIP

Peptídeo insulinotrópico semelhante a glicose

GLP-1


Peptídeo semelhante ao glucagon

Controle metabólico

Regula:

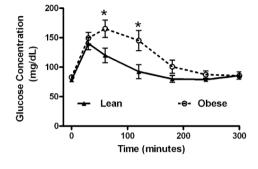
- Influxo de glicose
- Resistência insulínica
- Secreção do glucagon
- Função aguda das células ß
 - Secreção insulínica
- Função crônica das células ß
 - Proliferação
 - Efeito anti-apoptótico

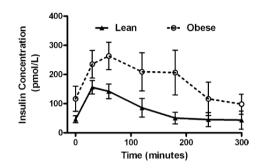
GLP-1 in lean versus obese cats

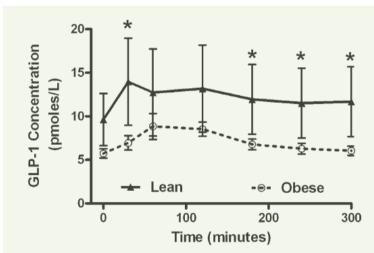
M. Hoenig a,b,*, E.T. Jordan b, D.C. Ferguson c, F. de Vries d

Received 20 May 2009; received in revised form 6 August 2009; accepted 9 August 2009

Abstract


The response to oral glucose was examined in 10 obese and 9 lean age-matched, neutered cats, In all cats, oral administration of 2 g/kg glucose was followed by a prompt increase in glucose, insulin, and glucagon-like peptide (GLP)-1. There were significant differences between lean and obese cats in the areas under the curve for glucose, insulin, and GLP-1. However, the responses were variable, and a clear distinction between individual lean and obese cats was not possible. Therefore, this test cannot be recommended as a routine test to examine insulin resistance in individual cats as it is used in people. A further disadvantage for routine use is also the fact that this test requires gastric tubing for the correct administration of the glucose and associated tranquilization to minimize stress and that it was associated with development of diarrhea in 25% of the cats. GLP-1 concentrations were much lower in obese than lean cats. The low GLP-1 concentrations in obese cats might indicate a contribution of GLP-1 to the lower insulin sensitivity of obese cats, but this hypothesis needs to be further investigated. © 2010 Elsevier Inc. All rights reserved.


Keywords: Glucose tolerance; Obesity; Incretin; Insulin sensitivity; Insulin resistance


1. Introduction

The oral glucose tolerance test (OGTT) is a frequently used test in human medicine [1-4], but it is rarely applied in pets. In asymptomatic people, a diagnosis of impaired glucose tolerance or diabetes is usually made based on fasting glucose concentrations and the response to a 75g glucose load (2-h test), which is increased to 100 g in pregnant women (3-h test) [5]. In children, 1.75 g/kg is administered [6,7]. Based on large studies, strict criteria have been established for the interpretation of the results to separate healthy people from people at risk of developing diabetes or who already have diabetes. Fasting glucose should be below 99 mg/dL. Fasting concentrations between 100 mg/dL and 125 mg/dL are borderline ("impaired fasting glucose"), and fasting concentrations repeatedly above 126 mg/dL are diagnostic of diabetes. The 2-h glucose should be below 140 mg/dL. Concentrations between 140 md/dL and 200 mg/dL indicate "impaired glucose tolerance." Glucose above 200 mg/dL at 2 h confirms a diagnosis of diabetes [8]. To our knowledge, OGTTs have been described in dogs, but not in cats. In dogs, different dosages ranging from 1.0 g/kg to 4 g/kg have been used [9-12], leading to a peak glucose

0739-7240/\$ - see front matter © 2010 Elsevier Inc. All rights reserved doi:10.1016/j.domaniend.2009.08.004

Gatos obesos ↓ GLP-1 em resposta glicose oral

^a Department of Veterinary Clinical Medicine and College of Veterinary Medicine, University of Illinois, Urbana, II., USA
^b Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
^c Department of Veterinary Sosciences, College of Veterinary Medicine, University of Illinois, Urbana, II., USA d Boehringer-Ingelheim Vetmedica GmbH, Ingelheim, Germany

^{*} Corresponding author at: College of Veterinary Medicine, University of Illinois, 1008 W Hazelwood Drive, SAC 13 Urbana, IL 61802, USA. Tel.: +1 217 244 5044; fax: +1 217 244 1475.

E-mail address: mhoenig@illinois.edu (M. Hoenig).

AUMENTO DE INSULINA DIMINUÇÃO DO GLUCAGON

PERDA DE PESO

9% ± 3% (14 dias) 4,9% ± 4,15% kg (28 dias) Doge 15x
Superior a
Doge 15x

REDUÇÃO DO APETITE **VÔMITO/NÁUSEA/ANOREXIA**

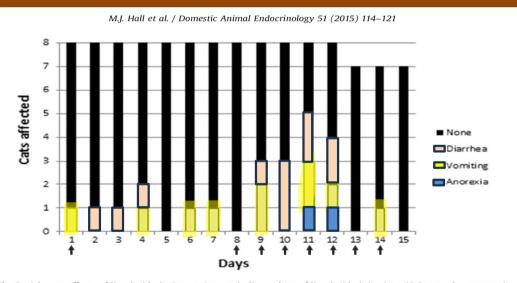
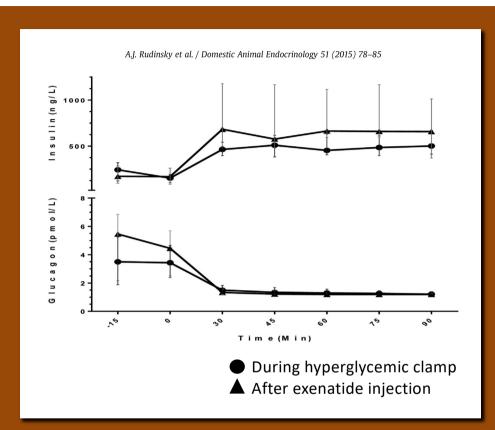



Fig. 2. Adverse effects of liraglutide in 8 cats. Arrows indicate days of liraglutide injections (0.6 mg subcutaneous).

Melhora da tolerância à glicose 3 semanas após uma única injeção!

NENHUM EFEITO ADVERSO!

Exenatide Treatment Alone Improves β-Cell Function in a Canine Model of Pre-Diabetes

Viorica Ionut^{1,c†}, Orison O. Woolcott^{1,c}, Hasmik J. Mkrtchyan¹, Darko Stefanovski¹, Morvarid Kabir¹, Malini S. Iyer¹, Huiwen Liu², Ana V. B. Castro¹, Qiang Wu¹, Josiane L. Broussard¹, Cathryn M. Kolka¹, Isaac Asare-Bediako¹, Richard N. Bergman¹*

 Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 2 Department of Physiology and Biophysics, University of Southern California, Los Angeles, California, United States of America.

These authors contributed equally to this work.

* Richard.Bergman@cshs.org

Abstract

ACCESS

Citation: Ionut V, Woolcott OO, Mkrtchyan HJ, Stefanovski D, Kabir M, Iyer MS, et al. (2016) Exenatide Treatment Alone Improves β-Cell Function in a Canine Model of Pre-Diabetes. PLoS ONE 11(7): e0158703. doi:10.1371/journal.pone.0158703

Editor: Marta Letizia Hribal, University of Catanza Magna Graecia, ITALY

Received: January 8, 20

Accepted: May 18, 2016

Published: July 11, 2016

Copyright: © 2016 lonut et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All data necessary replicate the study described are in the paper.

Institutes of Health (DK29867 and DK27619 is (https://report.nih.gov/award/index.cfm). Th had no role in study design_stata analysis, decision to_______or prepara

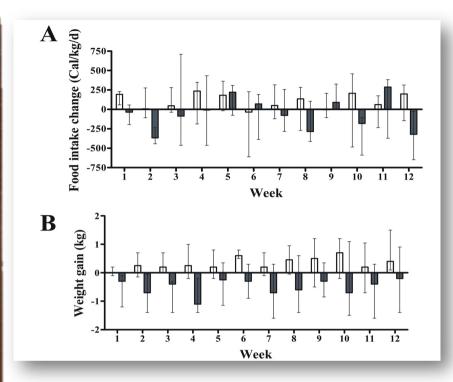
Competing Interest Treceive full in g from Amylin Pharmaceutica was been used in this studies was provided by Amylin Pharmaceuticals. This doe not alter the authors' adherence to PLOS ONE

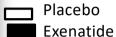
Backgroun

Exenatide's effects on glucose metabolism have been studied extensively in diabetes but not in pre-diabetes.

Objectiv

We examined the chronic effects of exenatide alone on glucose metabolism in pre-diabetic canines.

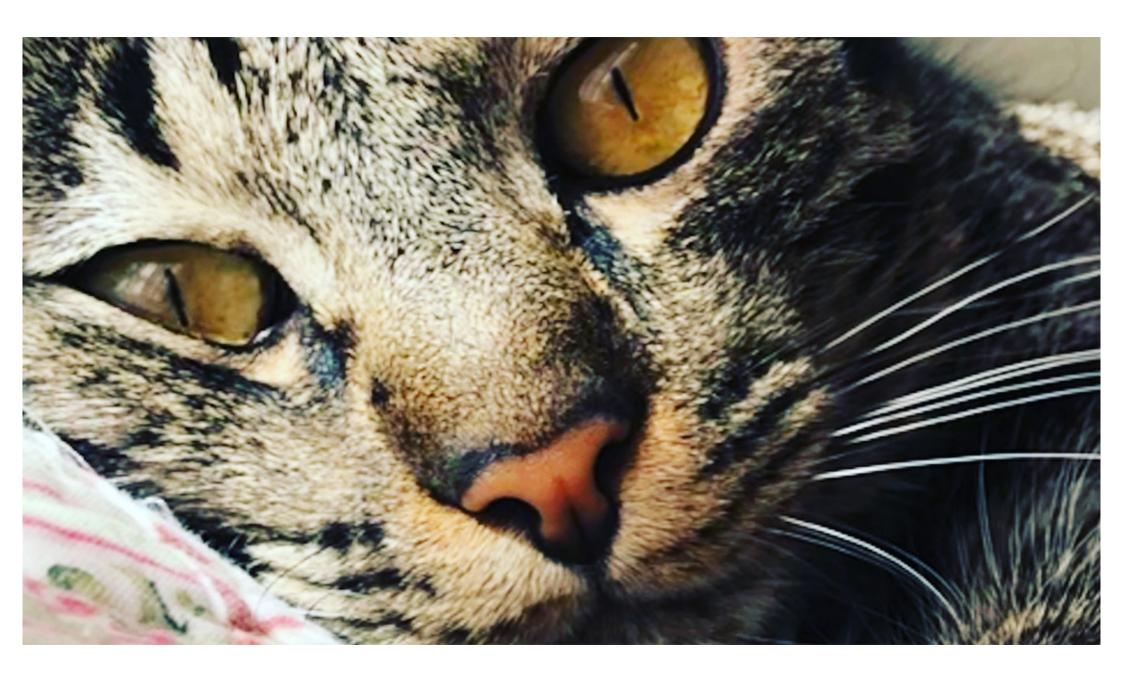

Design and Methods


TT: S caused an increase in glycemia at 120 min by 22.0% (interquartile range, IQR, 31 $^{\circ}$ (P = 0.011). IVGTT: This protocol also showed a reduction in glucose tolerance by 6.8% (IQR, 36.9%) (P = 0.002). AIR_G decreased by 54.0% (IQR, 40.7%) (P = 0.010), leading to mild fasting hyperglycemia (P = 0.039). Exenatide, compared with placebo, decreased body weight (P<0.001) without altering food intake, fasting glycemia, insulinemia, glycated hemoglobin A1c, or glucose tolerance. Exenatide, compared with placebo,

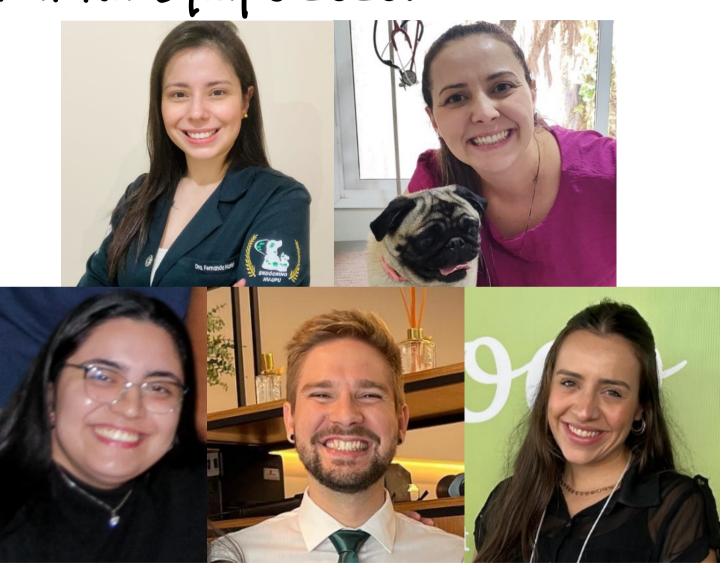
increased both OGTT- (P = 0.040) and clamp-based insulinogenic indexes (P = 0.016),

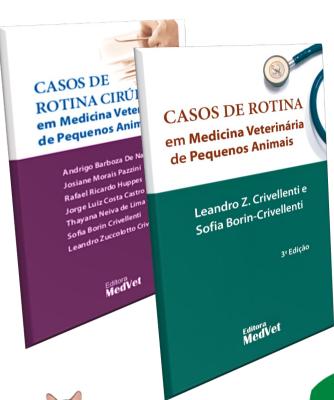
PLOS ONE | DOI:10.1371/journal.pone.0158703 July 11, 2016

1/18



Redução do peso, sem redução na ingestão de alimento


Melhora na função β cél (in vitro), mas não na tolerância a glicose ou sensibilidade à insulina



Minha Equipe 2025!

Endocrinologia HV-UFU

Bulário Médico-Veterinário para Cães e Gatos

